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Renormalized method for multichannel inhomogeneous 
Schrodinger equations 
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'Republic of China 

Received 11 May 1992, h find form 24 November 1992 

Abstract. A renomallzed method is developed for the solution of multichannel inhomogeneous 
SchrbZlinger equations thal appear frequently in atomic and molecular physics. The method is 
stable and accurate, its derivation is shaightfonvard. Formulae are presented in both the Hartree 
and Numerov approximations. A numerical example is used 10 demonstrate the method. 

In atomic and molecular physics, we frequently face the problem of solving the multichannel 
inhomogeneous Schrodinger equation of the form [1-3] 

where I is the unit matrix of N by N, @(R) is an N-component vector inhomogeneous term, 
usually proportional to an interaction multiplied by a localized initial state wavefunction, 
@+(R) is the N-component vector solution which is required to vanish at the origin and 
to be outgoing asymptotically, Q(R) = 2p[EI  - V(R)] in which p is the reduced mass, 
E is the energy, V(R) is an N by N potential matrix including the asymptotic centrifugal 
repulsion term. 

The solution of inhomogeneous Schrodinger equation is complicated by an instability 
problem and ordinary numerical integration schemes do not work. Presently there exist 
three methods proposed for the solution of (1): the invariant imbedding method [3,4]; 
the R-matrix propagation method [5]; and the log-derivative propagation method [6]. A 
common point of these methods is that they all propagate quantities related to the solution 
but cannot provide the solution explicitly. However the explicit solution is needed.for many 
applications. 

Our purpose here is to intioduce a new renormalized method for the solution of (1). 
The new method is stable and accurate; its derivatiou,is straighifonvard. Most important of 
all, the new method provides~ the solution explicitly. We will discuss formulae in both the 
Hartree and Numerov approximation and demonstrate the use of the method in a~numerical 
example. 

To be specific, let us assume in (1) the open channels are arranged with indices from 1 
to No and the closed channels with indices from NO + 1 to N. Channel i is open (closed) 
if ( E  - V,j(co)) is positive (negative). 

In Hartree's approximation, (1) is replaced by the following difference equations, 

m = 1,. . . , M $'(m + 1) + h(m)$+(m) + @+(m - 1) = ~ ( m )  (2) 
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where $+(m) - $+(Rm),  x(m) 
R, = Ro + mh, m = 0, . . . , M + 1, h being the step length. 

dimensional timedependent Schrodinger equation [7] by assuming 

h20(Rm) ,  A(m) = h2Q(R,) - 21, and the grid points 

Now we adopt and generalize a procedure used in the numerical solution of one- 

$+(m + 1) = a(m)$+(m) +B(m)  (3) 

where a(m) and p(m) are respectively N by N matrices and N-component vectors. By 
substituting $+(m + 1) in (3) into (2) and solving for $+(m), we obtain 

Comparing (4) with (3) gives the backward recursion relations 

a(m - 1) = -[a(m).+ h(m)]-' 

B(m - 1) = -a@ - N x ( m )  - B W l .  
The corresponding forward recursion relations are 

a(m) = -[a(m - 1)-' + h(m)] 

p(m) = x ( m )  +a(m - 1)-'B(m - 1) 

The staaing condition for the above recursion relations can be obtained by writing (2)  
for m = 1 and noting the fact that $+(Ro) = 0, 

$+(2) + W$+U) = XU). (7) 

Equations (7) and (3) with m = 1 together specify 

~ ( 1 )  = --h(l) B(1) = ~ ( 1 ) .  (8) 

The initial condition in (8) and the forward recursion relation in (6) completely determine 
a(m) and p(m) for all m, which in turn can be used to obtain any regular solution of the 
inhomogeneous Schrodinger equation. 

For the outgoing solution, let us define a diagonal matrix B whose diagonal elements 
are Bjj = exp(ikjh) (i = 1, ..., NO) and Bij = exp(-Kjh) (i = NO + 1,. .., N )  where 
kj = J2p[E - Kj(w)] (i = 1,. . . , N O )  and ~j = JZp[Vjj(w) - E ]  (i = NO+ 1,. . ., N ) .  
Assuming R(M + 1) is in the asymptotic region and the inhomogeneous term is negligibly 
small there then the outgoing boundary condition can be expressed as 

$+(M + 1) = B$+(M). (9) 

This equation may be combined with $+(M+ 1) = a(M)$+(M)  + p ( M )  from (3) to yield 

If desired the outgoing wavefunction can now be determined from 

$+(m)=or(m)-'[$+(m+l)-B(m)] m = M - l ,  ..., 1. (11) 
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The above formulae obtained in the Hartree approximation produce a numerical solution 
having an error proportional to h2. A more accurate approximation with an error proportional 
to h4 is the renormalized Numerov method. 

In the Numerov approximation, (1) is replaced instead by the following difference 
equations, 

[ I  - T(m + l)l@'(m + 1) - [21+ loT(m)l@+(m) +[I - T(m - 1)]11..+(m - 1) 

(12) 
h2 
12 

= -[@(m + 1) + 10@(m) + @(m - 1)l 

where 

(13) 

Equation (12) may be derived by combining the inhomogeneous SchrGnger equation (1) 
and the following identity 

[y(m + 1) - 2y(m) + y(m - I)] - ,[y"(m + 1) + lOy"(m) + y"(m - l)] = O(h6) (14) 

which is valid for any smooth enough scalar or matrix function I y ( R )  as can be verified 
readily by Taylor expansions. 

h2 
12 

T(m)  = --Q(m). 

h2 

. ~~ 
Now use the definitions . ~~ ~ 

F(m) = [ I  - T(m)l@+(m) 

h2 
12 x(m) = -[@(m + 1) + lO@(m) + O(m - l)]. 

Then (12) is written as 

F(m + 1) + h(m)F(m) + F(m - 1) = x (m)  

which has the same structure as (2). Therefore by assuming 

F(m+ 1) = d m ) F ( m )  +B(m)  (17) 

and following the steps in the Hartree approximation, we anive at exactly the same recursion' 
relations and starting condition as in equations (59, (6) and (8) except h(m) and x (m)  are 
defined differently. , , 

To fix the outgoing boundary condition in the Numerov approximation we solve for 
@+(A!) by using (S), the relation in (17) with index m = M and the definition~for F(&), 
m = M ,  M + 1. The result is 

I 
I/r+(M) =~ B ( W .  [ I  - T ( M  + 1)IB - LY(M)[I -~T(M)] 

As in the Hartree approximation, once rl.+(M) is fixed, the solution at all the g i d  points 
can be obtained. 
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We now demonstrate the above renormalized formalism using a simple onechannel 
inhomogeneous equation of the form 

Using Green's function method the exact outgoing solution for this example may be written 
as 

$&JR) = -A dR'sin(&R,) exp(i&R,) exp(-R') (20) 

where R,(R,) is the lesser (greater) of R and R'. The integral can be evaluated analytically 
and one finds that $&*(R) = -$exp(il/ZR) - exp(-R)]. 

We have used the renormalized method discussed above to calculate the outgoing 
solution of (20) and compared the numerical results with the exact one. Defining the 
position-dependent error function 6 ( R )  by 

where $&,cox(R') depends upon the finite difference approximation and the step length in the 
calculation. We have performed the integration in (21) numerically using Simpson's rule. 
It is expected that A(R)/h2 in the Hartree approximation and A(R)/h4 in the Numerov 
approximation to be quite independent of the step length h. We have used three values for 
the step length and two values of R as the point to apply the outgoing boundary condition 
and at the same time to evaluate the error function. The results in table 1 confirm the 
expectations. We also found that the value of A(R) is a good order of magnitude estimate 
of the local error in the numerical solution at any R. We conclude that the approximate 
wavefunctions are very accurate. 

Table 1. Comparing the calculated solutions and the exact one for the example in equation (19) 
with the eror function A ( R )  defined in equation (21). 

h 

0.005 0.01 0.02 

A ( R  =30)/hZ Wam'ee) 1.180 1.181 1.181 
A ( R  =40)/h2 Wartree) 1.572 1.572 1.571 
A(R =30j/h4 (Nume& 0.1167 0.1183 0.1183 
A ( R  = 4 0 ) / h 4  (Numemv) 0.1553 0.1571 0.1570 . 

Finally we note that one of the recursion formulae (the one for (~(m)) obtained here 
for the inhomogeneous equation is exactly the same as that obtained by Johnson [SI for the 
homogeneous equation. Therefori the present renormalized method can be regarded as a 
natural extension of the renormalized method of Johnson. 
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